RIA Spoke Resonator Cryomodule Designs

Joel Fuerst

Argonne National Laboratory

RIA Spoke Resonator Geometries

~63 3-gap cavities required for std. driver design (9 modules)

170 4-gap cavities required for alternative design (48 modules)

316L SS LHe vessel

- SS shell with CF flanges using commercial Cu gaskets
- straightforward TIG welded shell

Flange Design

- each cavity has 2 beam flanges (3.37" or 4.5" CF) and 3 side flanges (4.5" CF)
- 316L SS CF flanges brazed to Nb ring at 982 C using 82% Au, 18% Ni alloy (mp 949 C)
- excess Nb keeps temp below 700 C during ebeam weld, is machined away after welding

Displacement due to 15 psi load for alternative SS head geometries

Endwall displacements

ATLAS Positive Ion Injector Cryomodule

- •Space efficient design
- Top loading
- Versatile
- •Straightforward alignment capability

Design Evolution

- •Based on ATLAS PII cryomodule
- Top loading
- •Common vacuum vs. separate vacuums: cleanliness
- •Length is driven by cost, handling issues

Design Evolution

- •Cylindrical
- •Common vacuum
- •Top loading

Design Evolution

Box Cryomodule with Separated Insulating and Beam Vacuums

- •Reconciles separate beam and insulating vacuum spaces with short module-to-module spacing
- •Constructive feedback from JLab, DESY

Separate insulating and beam vacuums

- •Angled end walls permit drop-in installation
- •Valves isolate clean components during final assembly
- •Cleanliness requirements on vacuum vessel are relaxed
- •Allows use of multilayer insulation

Module-to-Module Detail

345 MHz β =0.36 Box Cryomodule

3-Spoke Cryomodules

$$\beta = 0.50$$

$$\beta = 0.62$$

Conclusions

- •Box cryomodule concept builds on successful ATLAS PII design, endloading cylindrical designs are proven at TTF, JLab, SNS, etc.
- •Although rectangular shape is a good fit for a variety of drift tube cavity geometries, cylindrical may be more appropriate for spoke cavities
- •Addresses gradient issue with separate beam vacuum and clean assembly techniques
- •Preserves tight module-to-module spacing in a top- or end- loading design with separate vacuum systems